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a  b  s  t  r  a  c  t

We  report  an  autotuning  technique  for feed  systems  of a CNC  machine  tool  using  a  least-square  parametric
system  identification,  a frequency-domain  design  method,  and  a fine-tuning  method  based  on an  opti-
mal  search  algorithm.  The  feed  system  of a movable-column-type  vertical  machining  center  has  a  large
moving  mass  because  spindle  and  z-axis  servo  systems  are  housed  in the  column.  Therefore,  perturbation
signal  is carefully  designed.  Using  a reasonably  “smooth”  multiharmonic  signal,  system  identification  is
completed  rapidly  (8 s) without  causing  excessive  vibration  or violating  travel  limits. Accurate  informa-
tion  on  the  plant  dynamics  is  obtained  up  to  30 Hz.  Feed  systems  (i.e.,  x,  y, z  axis)  are  modeled  as  3rd-order
transfer functions  in a discrete  domain,  and  compared  with  the  identification  results  obtained  using  a
Gaussian  random  sequence  and  a frequency-domain  system-identification  method.  A proportional  (P)
controller  is designed  using  numerical  search  in  frequency  domain  that  maximizes  the  tracking  band-
ID control
igital control
ptimal search
ole-placement method
NC machining center
eed system

width  and  still  keeps  the  system  well  damped.  The  frequency  response  is improved  compared  to that
of a pole-placement  method  (� =  0.707).  P  controllers  of  all the  three  axes  that minimize  contour  error
for  three-dimensional  a 20-mm-diameter  circular  trajectory  are  fine-tuned  using a  fast  optimal-search
method  (440  s).  The  contour  error  is significantly  improved  (average  error of  2.25  �m),  compared  to the
results of the  pole-placement  method  (37.89  �m)  and  the  frequency  domain  design  method  (12.37  �m)
when  feed  rate  is 0.5 m/min.  The  calculated  stability  margins  of the controller  gains  are  satisfactory.

© 2011 Elsevier Inc. All rights reserved.
. Introduction

The importance of CNC machine tools in modern manufacturing
annot be overstated. Control of a servomechanism of CNC-aided
achines is fundamental yet important because it coordinates mul-

iple feed axes to track a three-dimensional tool path accurately
o ensure the quality of machined workpieces [1].  As global com-
etition calls for faster production cycles than ever, a high-speed
igh-precision motion control is still an indispensable aspect of
NC machine-tool design.

Although some high-end modern motion controllers feature
dvanced control schemes, for example friction compensation

nd acceleration feedforward, their feedback control scheme is
ither a P (proportional) or PD (proportional-derivative) control
n many cases [2,3]. More sophisticated model-based features such

∗ Corresponding author. Present address: Bioengineering Department, University
f  California, Berkeley, 342 Stanley Hall, Berkeley, CA 94720, United States.
el.: +1 510 647 4353; fax: +1 510 642 5835.

E-mail address: dohyun@berkeley.edu (D. Kim).
1 Present address: VSI Group, Data & Storage Laboratory, LG Electronics Inc., 221
angjae-dong, Seocho-gu, Seoul 137-130, Republic of Korea.

141-6359/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.precisioneng.2011.09.007
as ZPETC (zero-phase-error-tracking control), CCC (cross-coupled
control), disturbance cancellation, MRAC (model-reference adap-
tive control) are not sufficiently transferred to the industry [4].
The feedforward ZPETC controller was proposed to expand the
tracking bandwidth by canceling closed-loop poles, and modify-
ing future references based on an inverse of closed-loop dynamics
[5–7]. However, the accuracy of a system model is critical for
this approach to be successful [8,7]. Furthermore, the feedforward
action can create high-frequency components in the reference, and
result in a significant vibration in the servomechanism [2,4] unless
smoothing up the reference. A disturbance observer is proposed
to make the controller robust to parameter variations [2,6], and
enhance tracking capability by compensating friction, especially
where a speed of at least one axis approaches zero [6,7]. However,
this approach is also based on the premise that the system dynam-
ics and friction are precisely modeled. Thus, inaccurate modeling
may  degrade overall performance [8].  In industrial practice, a P or
PD controller is still used for a typical machine-tool specification
because these controllers are easily tuned and highly robust [4].

Therefore, a simple yet practical P controller is chosen in this work.

Regardless of the dominant usage, the design of a PID con-
troller is still done heuristically, or done manually with a provided
guideline [9].  Furthermore, fine tuning of the controller takes a long

dx.doi.org/10.1016/j.precisioneng.2011.09.007
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:dohyun@berkeley.edu
dx.doi.org/10.1016/j.precisioneng.2011.09.007
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ime, and the controller should be retuned if the plant dynamics
hanges. Thus, there has been a strong thrust on tuning con-
roller automatically [9–15] since the Ziegler–Nichols method was
ntroduced in 1942 [16]. All autotuning methods are essentially
utomation of three separate design steps. Firstly, a model structure
s defined. Time-domain models include first-order-plus-dead-
ime models [10], impulse response models [11], higher-order
inear transfer functions in a continuous domain [14,13,12],  and
hose in a discrete domain. Frequency-domain models are also
sed [15,17]. Secondly, the input-to-output characteristics (either
arametric or nonparametric) of a system is identified. For this pur-
ose, various perturbation signals such as step responses [13], PRBS
pseudo-random binary sequence) [11], RGS (random Gaussian
equence) [18], relay excitations [10,17], sinusoids [14], variable-
requency sinewaves [15] and sweep sines are applied to the plant,
nd the resulting output signals are collected. Then, the plant
odel is estimated based on input and output sequences. Thirdly,

 controller is designed. In time domain, the design approaches
nclude heuristic rules and tuning formulae [10], desired closed-
oop characteristics [11], fuzzy rules [13], placement of closed-loop
oles, and cancellation of these poles [9,12,14]. In a frequency
omain, tuning rules (e.g., Ziegler–Nichols) [11], and phase- and
mplitude-margins criteria were adapted [15,17].  In practice, all
hese methods may  require some sorts of fine tuning before com-

issioning [9,11].
Many of the aforementioned autotuning methods

16,10,11,13,17] may  not be adequate for a certain class of
eed systems. In the “movable-” or “traveling-column-type”
ertical machining center, a workpiece is mounted on a fixed
able. In this configuration, spindle axis and sometimes z-axis
ervo system are housed in the column, and the extremely large
ass travels in multiple axes [19]. Therefore, perturbation signals
ust be reasonably “smooth” not to severely agitate the heavy

olumn. “Aggressive” signals such as RGS, PRBS, high frequency
ine steps or sine sweeps could cause an extreme vibration,
all-screw damage, and motor overload. For the same reason,
brupt signals such as step and relay excitation may  not be used.
asic relay methods provide information on system dynamics at a
ingle frequency [20]. Open-loop system identification is sensitive
o disturbance [15], and may  cause violation of travel limits,
hich can be especially damaging for the movable-column-type
achine tools. Conventional least-square fitting of frequency

esponse using sweep sines or step sines over a wide frequency
ange takes a long time. A novel contribution of this work is a
ultiharmonic perturbation signal that completes identification

apidly (∼8 s), minimizes vibration, and does not violate travel
imits.

Maximizing the closed-loop performance of an individual axis
oes not necessarily guarantee to meet an important design cri-
erion, contour error [2].  An autotuning method developed for a
ingle axis may  not be suitable for the case where multiple axes
eed to be coordinated to minimize contour error. By matching
losed-loop dynamics of two axes (i.e., matching magnitude and
hase difference), the contouring error can be improved [21] for
wo dimensional trajectories. Assuming axis models are very accu-
ate, axis matching can be predicted using numerical methods.
lthough this idea can be readily generalized to the 3-Cartesian
xis case, a direct analytical- or simulation-based design might not
lways be successful in mitigating the contour error when there
s discrepancy between the actual and modeled axis dynamics. As
he final step of the autotuning procedure, a fine-tuning method
or three feed axes that minimizes experimentally obtained con-

our error using an optimal search algorithm (i.e., steepest-descent
lgorithm), is proposed. The proposed search method is much faster
∼440 s) than a global search where all possible gain combination
s examined, and significantly improves the contour error from the
ring 36 (2012) 339– 348

results where frequency response of an individual axis is maxi-
mized.

Autotuning procedure in this work is summarized as follows: (1)
3rd-order discrete transfer functions of feed systems are acquired
using a least-square parametric closed-loop system-identification
method and a multiharmonic perturbation signal (Section 3). (2) A
P controller that maximizes tracking performance is designed using
a pole-placement technique (i.e., � = 0.707) and a numerical search
algorithm is used for the maximum closed-loop frequency response
(Section 4). (3) Fine tuning of x, y, and z axes is performed automat-
ically using an optimal design approach to minimize contour error
to a 3-D circular trajectory (Section 5). The fine-tuning method is
evaluated in terms of contour-error improvement, compared with
the P controllers designed in Section 4.

2. Experimental apparatus

The plants are x-, y-, and z-axis feed systems of a vertical
machining center, ACE-V30 (Daewoo Heavy Industries, Incheon,
South Korea). The vertical machining center is a “movable-column”
type. A workpiece is mounted on a fixed table. A spindle axis
and z-axis feed are housed in the column. An incremental rotary
encoder (10,000 pulse per revolution, TTL signal) was used in
each axis for position measurement (lead-screw pitch: 1 encoder
pulse = 1 �m).  The autotuning algorithm was implemented using
a motion-control DSP system (Model DS1003) equipped with an
encoder board (Model DS3001) and a DAQ board (Model DS2201),
all of which were made by DSPACE Inc. (Wixom, MI,  USA). The sam-
pling rate was 4 ms.  The autotuning algorithm was written in C
language. A PC-software package, Cockpit and Trace (DSPACE), was
used to communicate with the DSP system for monitoring of the
autotuning procedure. Numerical simulations were written and run
in MATLAB (The MathWorks, Inc., Natick, MA,  USA).

3. System identification

A feed-system model is identified by observing correlation
between input perturbation signal and resulting output of a plant.
The model structure has three requirements: (1) physically mean-
ingful; (2) accurately representing the plant dynamics within a
frequency range of interest; (3) relatively simple so that the
controller can be designed without too much complexity. The
perturbation signal is designed cleverly so that accurate model
information can be rapidly identified without upsetting the plant.

3.1. Model transfer function

A linear time-invariant transfer function between feed-drive
input U(s) (i.e., velocity command) and angular velocity ˝(s) can
be expressed as a 3rd-order system in Laplace domain [22–24]. An
integral term s is multiplied to the denominator when express-
ing output as rotational angle �(s). The transfer function becomes
4th-order system when the position Y(s) is output as Y(s) = Pl˝(s)/s,
where Pl is the lead-screw pitch. Dynamics of the current-feedback
loop in a motor drive can be neglected because of a high band-
width [8,6,7].  The structural modes of lead-screw-nut-type feed
axis, usually observed in high frequencies (>100 Hz [25]), are not
modeled because: (1) a closed-loop bandwidth (CLBW) of a typi-
cal (i.e., not for high-speed machining) CNC machine is about 25 Hz
(Our exhaustive heuristic gain tuning resulted in CLBW less than
20 Hz for all feed axes) [4]; (2) power spectrum of reference tra-

jectory for a typical machine tool mainly consists of low frequency
signal because the CNC controller generates a trajectory, of which
acceleration is limited [18]. Therefore, the transfer function can
be practically expressed as a 2nd-order, or 3rd-order system if
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ime delay at input of the feed drive is considered. The sampling
ate Ts was reasonably selected (4 ms,  Nyquist frequency = 125 Hz)
ecause: (1) a low attainable CLBW; (2) limited processing power
f the DSP system for complex autotuning algorithm; (3) faster
ampling is not always better [26,27,18].

.2. Modified prediction-error method for system identification

An nth-order transfer function of a feed system in z-domain
p(z), considering the effect of the zero-order hold (ZOH), is
xpressed as:

Y(z)
U(z)

= Gp(z) = b1zn−1 + b2zn−2 + · · · + bn

zn + a1zn−1 + · · · + an−1z + an
. (1)

herefore, an auto-regression-with-extra-input (ARX) model is an
dequate model structure:

(k) = − a1y(k − 1) − · · · − any(k − n) + b1u(k − 1)

+ · · · + bnu(k − n) + vo(k) , (2)

here vo(k) is disturbance, and k is sample counter. The ARX model
Eq. (2))  can be expressed in a vector form:

(k) = �T (k)�o + vo(k) , (3)

here

�(k) = [−y(k − 1) · · · − y(k − n) u(k − 1)·  · ·u(k − n)]T , and
�o = [a1 a2 · · · an b1 b2· · · bn]T .

ere �o is the parameter for the actual (nominal) system.
Using the prediction-error method (PEM) with a least-square

riterion, parameters of the plant model that minimize the differ-
nce between the output of the actual system [28] is:

LS
N =

[
1
N

N∑
k=1

�(k)�(k)T

]−1 [
1
N

N∑
k=1

�(k)y(k)

]
= �−1Y , (4)

here N is the total number of samples. However, �LS
N and �o are

ot identical due to disturbance vo(k), nonlinear effects, and noise
29]. Thus, �LS

N may  contain biased parameters, which could ren-
er unstable the neutrally stable pole originated from integrating
ction of a motor controller. Thus, this pole should be fixed at z = 1
or the stability. Eq. (1) is modified as:

Y(z)
U(z)

= b1zn−1 + b2zn−2 + · · · + bn(
1 − z−1

)  (
zn + a′

1zn−1 + · · · + a′
n−2z2 + a′

n−1z
) , (5)

here a1 = (a′
1 − 1), a2 = (a′

2 − a′
1), . . .,  an−1 = (a′

n−1 − a′
n−2), and

n = −a′
n−1. This transfer function is rewritten for the least-square

ormulation:

�Y(z)
U(z)

= Y(z) − Y(z − 1)
U(z)

= b1zn−1 + b2zn−2 + · · · + bn

zn + a′
1zn−1 + · · · + a′

n−2z2 + a′
n−1z

,

(6)

nd

y(k) = �T
r (k)�ro + vo(k) , (7)

here
�r(k) = [−�y(k − 1) · · · − �y(k − n + 1) u(k − 1)·  · · u(k − n)]T ,

�ro = [a′
1 · · · a′

n−1 b1· · ·bn]T , and

�y(k) = y(k) − y(k − 1).
Fig. 1. (a) A Gaussian pseudo-random input sequence and (b) the output of the
x-axis feed system.

Least-square estimation of the model parameter

�′LS
N = [â′

1 · · · â′
n−1 b̂1· · ·b̂n]T , (8)

is again attained using PEM. The original model (Eq. (1))  is recovered
from �′LS

N .

3.3. Multiharmonic perturbation signal

Perturbation signal u(k) is applied to the plant Gp(z) (i.e., feed
system) and plant output y(k) is collected for system identifica-
tion. Here, u(k) is velocity command (unit of V) to the servo drive,
and y(k) is position (unit of �m)  obtained from encoder reading. A
persistent excitation condition must be met  for u(k) to ensure the
identifiability of a given model [28]. Usually, signals with constant
spectra such as PRBS or RGS (Fig. 1a) were considered to be better
owing to excellent persistence-excitation orders. However, such
“flat-band” random sequences have some drawbacks. The flat-band
signal could lead to a bias toward high frequency in an ARX model
structure [18]. Also, such aggressive signals are not suitable for a
class of CNC machining centers. When the inertia of the column is
very large, RGS caused an extreme vibration (Fig. 1b), which could
damage the lead screw and overload the servo motor. The conven-
tional swept sine excitation of a wide band was not an exception
in this regard.2 Furthermore, the column drifted and sometimes hit
the travel limit because of a long duration (>10 min). Additionally,
swept sine excitation is sensitive to nonlinear distortion [29].

Therefore, the input signal should be designed carefully. Firstly,
the signal must be “smooth” enough to minimize such exces-
sive vibration. Secondly, the signal must be informative by having
a wide range of frequency components [28]. Thirdly, the signal
should be symmetric so that a feed axis would not reach the travel
limit. Lastly, for rapid system identification, N should be an accept-
able number (i.e., duration of the signal should be reasonably short).
A multiharmonic signal, the combination of weighted sinusoids of
2 In an actual instance, graduate students in the lab a floor above called emergency
because they thought of having an earthquake.
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is close to the model, indicating that the identification result is accu-
rate in the frequency domain. A third-order model was obtained
using a short RGS signal (N = 2000) for the sake of comparison. The
ig. 2. (a) The multiharmonic input sequence and (b) its discrete Fourier transform
single-sided amplitude spectrum).

arious frequencies, is proposed here to meet the aforementioned
equirements. The input sequence is defined as:

(k) =

⎧⎪⎨
⎪⎩

n∑
i=1

(−1)iAi sin
(

2�k

N
2i

)
if 1 ≤ k ≤ N/2,

u (N − k + 1) if (N/2  + 1) ≤ k ≤ N,

(9)

here the amplitude A is a design parameter. A should be less than
, so the amplitude is smaller at higher frequencies to minimize
he vibration, and u(k) is within the voltage input limit of the servo
ontroller (i.e., ±10 V). On the other hand, if A is too small, signal
ower is too low to acquire the plant information at higher fre-
uencies. Thus, A = 1/1.7 was chosen empirically. As denoted from
q. (9),  the first half of the signal is reversed in the second half. As

 result, the perturbation signal is symmetric, forcing the feed axis
o return to the origin. In Eq. (9),  the 2i term spreads harmonics
ogarithmically to cover a wide band with a relatively small n. n
hould be reasonably large because persistent-excitation order 2n
hould be greater than the number of the parameters to be identi-
ed (i.e., 2n for the nth-order model) [28]. On the other hand, the
ighest frequency should be less than the Nyquist frequency (i.e.,
25 Hz in this work) to prevent anti-aliasing [30]. Therefore, for

 = 9 the system parameters were successfully obtained using the
EM. System identification was fast compared to common sweep
ine methods; data collection just took 8 s, and parameter calcula-
ion was instant. The designed input sequence is shown in Fig. 2a.
he discrete Fourier transform (Fig. 2b) shows the logarithmically
pread frequency content (i.e., 0.25–64 Hz). It should be noted that
he coefficients at low frequency (0.25 and 0.5 Hz) are noisy due to
ow N.

As seen in Fig. 3a, the open-loop response of the x axis to the
erturbation signal does not contain strong high-frequency com-
onents unlike random sequences (Fig. 1a). The reduction of high
requency contents is observed in a Fourier transform plot (Fig. 3b).
he symmetric output sequence (Fig. 3a) indicates that the axis
ommand returns to the origin.

.4. Closed-loop system identification
The feed-drive systems are not completely symmetric. The
ervo-drive input may  have non-negligible offset, and frictional and
iscous damping can be direction dependent [8,6]. Especially, the z
Fig. 3. (a) The output sequence for the x-axis feed system to the multiharmonic
signal and (b) its discrete Fourier transform (single-sided amplitude spectrum).

axis is significantly asymmetric due to gravity acting on the heavy
column. As a result, the identified parameters �′LS

N could be biased.
The asymmetry and disturbance can be mitigated by using

closed-loop system identification. The block diagram (Fig. 4) shows
how the perturbation signal is fed to Gp(z), the open-loop trans-
fer function between motor-drive velocity command u(k) and axis
position y(k). In this work, the perturbation signal is applied to the
loop as position reference r(k). The input–output relationship of
the block diagram is expressed as y(k) = Gc(z)r(k), where Gc(z) is the
closed-loop transfer function. The gain Kp was set as a small value
(= 0.0015). The sequence r(k) was scaled so that the magnitude
of the plant input sequence uopen(k) is matched with the origi-
nal perturbation signal (Eq. (9)): r(k) = uopen(k)/Kp. The closed-loop
identification was used for the z axis, as the open-loop identification
delivered satisfactory results for the x and y axes.

3.5. Identification results

The 2nd, 3rd, 4th, and 5th-order Gp(z) of the x-, y-, and z-axis
feeds are obtained using the PEM and multiharmonic signal. A Bode
plot (Fig. 5) shows the system-identification result for 3rd-order
model of the x-axis feed (the reason for selecting the 3rd-order
model will be given in the next section). As a comparison, the
transfer-function estimate obtained using a power spectral method
[18] at the 9 frequencies of the multiharmonic perturbation signal
is also shown in magnitude plot (Fig. 5a). Except two low-frequency
points marked in open circle (perhaps due to small N), the estimate
Fig. 4. The block diagram for the closed-loop system identification.
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Fig. 5. Comparison of system identification results for the x-axis feed in a Bode
plot: (1) frequency-domain system identification with a dynamic signal analyzer,
(2)  prediction error method (PEM) with the multiharmonic signal, (3) PEM with a
r
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shows the obtained parameters of 2nd- and 3rd-order models for

F
b

andom Gaussian sequence, and (4) spectral estimate from the multiharmonic input
nd resulting output sequences.

wo models are similar up to 30 Hz, which is higher than the fre-
uency range of interest (∼20 Hz). A frequency domain model was
lso obtained with a dynamic signal analyzer (HP35670A, Agilent,
anta Clara, CA, USA). Due to the aforementioned vibration and
ravel-limit issues, the maximum frequency was limited to 15 Hz,
nd the closed-loop identification was performed with a small P
ain (0.0005). This model was also very close to the case of the
EM with multiharmonic signal up to 30 Hz. Phase diagram (Fig. 5b)

lso shows that the model obtained using the PEM and multihar-
onic signal is similar to those yielded using the PEM and RGS, and

requency domain modeling, within the frequency range of interest.

ig. 6. Comparison of the outputs from the actual plant (y-axis feed) and the models o
etween the actual plant and the model outputs, (c) velocity, and (d) magnitude of veloci
ring 36 (2012) 339– 348 343

The system identification was repeated at least 10 times for
each axis, and resulted in stable models everytime. The modified
regressor in Eq. (7) guarantees the marginal stability of the system
containing integral action in the servo drive. If the servo drive was
detuned or the feed system had a mechanical problem, an unsta-
ble model could be identified. The autotuning program is designed
to display open-loop poles, and alert the user if an unstable pole is
detected. Thus, the end user can check the feed axis and identify the
system again, by changing the parameters of the excitation input.

3.6. Model selection

The position and velocity outputs of the actual plant and the
models of different orders (i.e., 2, 3, 4, and 5th order) are com-
pared for the y axis in Fig. 6. A slight offset in position exists when
returning to the origin (Fig. 6a and b). Other than that, the models
agreed well with the actual plant for all the system orders. Velocity
responses in Fig. 6c and d also show good agreement (note that the
prediction errors are noisy because velocity is calculated by numer-
ical differentiation, not measured using a tachometer), and do not
show the drifts observed in the position outputs (Fig. 6b). The pro-
posed modified discrete models (Eq. (5))  represent the feed-drive
systems adequately.

Accuracy of the models of different system orders was compared
in terms of average position prediction error. The error is defined
as

(
1/N

)∑N
k=1

∣∣y(k) − ŷN
m(k)

∣∣ (m = model order), where y(k) is the
position output of the actual plant and ŷN

m(k) is the output predicted
using the models. The difference among the models are insignifi-
cant. For example, the model errors were 219.93, 222.22, 224.54,
and 226.69 �m for m = 2, 3, 4 and 5 respectively for the y axis. It is
more convenient to design a controller with the models of smaller
orders. For example, unstable closed-loop poles were obtained with
5th-order models in a pole-placement controller design step, which
will be shown in Section 4.1.  Thus, 2nd- and 3rd-order models were
chosen. Moreover, as described in Section 3.1,  these models are
physically meaningful in the frequency range of interest. Table 1
all feed axes. As will be shown later (Section 4.2), the 3rd-order
model will be used in the autotuning procedure because it leads to
a larger attainable closed-loop bandwidth (CLBW).

f various system orders: (a) position, (b) magnitude of position prediction errors
ty prediction error between the actual plant and the model outputs.
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Table 1
Model parameters for the x-, y-, and z-feed systems obtained using PEM.

b1 b2 b3 a1 a2 a3

xaxis
2nd order 13.60 30.75 – − 1.624 0.6240 –
3rd  order 5.754 39.99 − 18.43 − 2.160 1.553 − 0.3922
yaxis
2nd  order 17.48 22.06 – − 1.641 0.6410 –
3rd  order 10.87 26.40 − 6.971 − 2.032 1.340 − 0.3076
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Table 2
Comparison of P gains and prediction of corresponding stability margins and sensi-
tivity peak obtained using P controller selected in each controller-design step.

Axis Gains, margins Pole placement Numerical search Fine tuning
Ms, CLBW

Kx,p 0.0010826 0.0018931 0.0014747
GM 6.501 3.718 4.773

x  PM (◦) 73.39 60.24 67.10
Ms 1.304 1.603 1.439
CLBW (Hz) 7.75 18.45 13.21

Ky,p 0.0017102 0.0018733 0.0017732
GM 5.309 4.847 5.121

y PM (◦) 64.33 62.00 63.43
Ms 1.435 1.484 1.453
CLBW (Hz) 13.58 15.24 14.24

Kz,p 0.0005230 0.0014326 0.0014145
GM 9.973 3.641 3.687

z PM (◦) 79.43 60.28 60.67
zaxis
2nd  order 10.72 15.53 – − 1.764 0.7639 –
3rd  order 2.442 20.24 − 5.32 − 2.356 1.869 − 0.5129

. Design of a P controller

Contour error, orthogonal deviation from a desired tool path, is
n important metric in the design of motion controllers of a CNC
achining center. A design approach is to maximize the CLBW

f a feed axis so that the tracking error of each axis is reduced.
xpanding the tracking bandwidth of all feed systems leads to the
eduction of contour error to curved trajectories [2].  An additional
enefit of having a large CLBW is effective rejection of disturbance
31].

.1. Pole-placement method

Our first design approach is maximizing the CLBW of an indi-
idual axis while keeping the closed-loop system well damped.
he tracking bandwidth of a 2nd-order system with complex poles
s maximized without resonance when the damping ratio is 0.707
32]. As undamped natural frequency ωn is the only adjustable vari-
ble in such close-loop system, if we find Kp satisfying the 0.707
amping ratio, ωn is uniquely determined. Therefore, closed-loop
oles are distinctively determined.

Poles of a 3rd-order system can be similarly determined. How-
ver, a 3rd-order system has an additional pole. The proposed
ole-placement method works well for the system where complex
oles are dominant second order. The effects of zeros were negligi-
le (i.e., sampling zeros [26], zeros far into the LHP) for feed-drive
ystems studied in this work. A characteristic equation of the 3rd
rder system in discrete domain can be written as:

z − r)
{

z2 − 2 e−Ts�ωn cos
(

Tsωn

√
1 − �2

)
z + e−2Ts�ωn

}
= 0 ,

(10)

here r is the third pole. The above equation should be equal to the
haracteristic equation of the closed-loop transfer function with a

 controller:

3 + (a1 + Kpb1)z2 + (a2 + Kpb2)z + a3 + Kpb3 = 0. (11)

y equating Eqs. (10) and (11), and arranging them, we have two
quations for P gain, Kp,1 and Kp,2 as functions of ωn:

Kp,1 (ωn) =
e−2Ts�ωn − 2a3 eTs�ωn cos

(
Tsωn

√
1 − �2

)
− a2

b2 + 2b3 eTs�ωn cos

(
Tsωn

√
1 − �2

) , and

Kp,2 (ωn) =
−2e−3Ts�ωn cos

(
Tsωn

√
1 − �2

)
− a1 e−2Ts�ωn + a3

b1 e−2Ts�ωn − b3
.

(12)

he above equations can be solved numerically. P gain satisfying
 = 0.707 can be calculated once ωn satisfying Kp,1(ωn) = Kp,2(ωn) is

etermined. For the x axis, ωn = 123.23 rad/s, and Kp = 0.0010826 at
his ωn. The feedback gains for the y and z axes were determined
n the same way. Table 2 shows the feedback gains and the corre-
ponding CLBWs for all feed axes obtained using the pole placement
Ms 1.185 1.609 1.598
CLBW (Hz) 2.89 13.13 12.96

method as well as other methods which will be described later
sections. Predicted stability margins and sensitivity peak for each
controller design, which will be elucidated in later sections, are also
shown in Table 2.

4.2. Numerical search of P gains in frequency domain

The pole-placement method does not work properly when the
assumption of two dominant complex poles fails. The 3rd-order
open-loop model has the two  complex-conjugate poles, and the one
real, marginally stable pole. A root-locus study shows that increas-
ing P gains pulls this real pole toward z = 0 and pushes the two
complex poles toward the boundary of the unit circle (|z| = 1). Thus,
setting a P gain using the condition � = 0.707 can result the mag-
nitude of the third pole being similar to that of a complex pole. In
this case, influence of the third pole cannot be disregarded, and it is
difficult to find a P gain that maximizes the CLBW analytically as in
the previous section. Thus, a numerical search method is proposed.
Firstly, a stable Kp is chosen as an initial condition. A P gain from
the pole-placement method can be a good candidate. Secondly, the
value of Kp that maximizes the CLBW is numerically found as a
function of ωn using a search algorithm, under the condition:

max
ωn

∣∣Gc(ejωnTs , Kp)
∣∣ ≤ 1

(
0 < ωn < �/Ts

)
, (13)

where the CLBW was numerically calculated (i.e., ωn that satis-
fies

∣∣Gc(ωn)
∣∣ =

√
2/2). The poles for ωn are monitored for stability

throughout the search process. The search algorithm essentially
constructs a bode plot from the model, and thoroughly checks for
resonance (i.e., keeps the system well damped) and finds a CLBW.
It is found that the bandwidth is improved by increasing Kp as long
as the closed-loop poles are stable. Root locus technique was used
to confirm this observation.

The P-gains obtained using this method are compared with the
gains from the pole-placement method. For the 2nd-order system,
the results from the two  methods are identical, indicating that the
numerical search algorithm works well. For the 3rd-order model
(of the x axis), however, there is a significant increase in gain (from
0.0010826 to 0.0018931), and an appreciable improvement of fre-
quency response is observed. Thus, the dominant-complex-pole
assumption did not work for the x-axis. Table 2 also shows the
gains for the y and z axes found in the numerical search method.

For the y-axis, the results from the two  methods are similar, indi-
cating the existence of dominant complex poles. A magnitude plot
(Fig. 7) clearly indicates expansion of the CLBW. The 3rd-order sys-
tem can yield a wider bandwidth than the 2nd-order model can
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ig. 7. Closed-loop frequency responses of the 2nd- and 3rd-order models obtained
sing the pole-placement and numerical search methods (x axis).

i.e., 18.46 Hz vs. 11.28 Hz). Consequently, the 3rd-order model is
hosen.

The gain-design methods and model selection proposed here
hould be valid considering the accuracy of the model (Fig. 5). In
ddition, model variation should be small because: (1) the machine
ool has a fixed payload (i.e., workpiece is mounted on a fixed table);
2) cutting force is delivered thorough a lead-screw-nut system and
s at much higher frequency range than the attainable CLBW [33].
ence the control loop only feels and tries to reject the average
alue of the cutting forces. Therefore, the gain design method can
ope with varying workpiece mass relatively well. Furthermore, as
he P gains are selected conservatively (i.e., no resonance), the gain

argin is high. A stability margin study will show this point more
learly in Section 5.2.

. Fine tuning of the P controller

In the previous section, the P gains were selected to maxi-
ize the CLBW of each axis. However, contour error would be

arge if the dynamics of all the axes were not matched. Track-
ng of a circular trajectory is a common evaluation of contouring
erformance as the reference signal can be regarded as a linear
ombination of sinusoid signals. For a two-dimensional circular
rajectory, theoretical treatment is available to find optimal closed-
oop dynamics [21]. It can be shown that in a 3-Cartesian axis
ystem matching the axis dynamics will result in the tracking
rrors in the individual axes due to constant velocity motion to
e proportional to the commanded velocity components; thereby
ringing the tool onto the desired tool path. However, discrepan-
ies between the modeled and true drive dynamics and disturbance
orces (like friction or cutting forces) can deteriorate the success
f this contour error mitigation strategy. In this case, some man-
al adjustment of the control gains may  be necessary. In this
ection, the objective is to find optimal P gains that minimize a con-
our error to a three-dimensional circular trajectory. In practice,
his objective can be met  by empirical fine tuning of closed-loop
ynamics by an operator. Here a rapid, automated fine-tuning
ethod, which can circumvent multi-axis unmatched dynamics, is

roposed.

A simple heuristic approach to the aforementioned problem is

 global search (i.e., try all possible gains within a given bound-
ry) of the three gains Kx,p, Ky,p and Kz,p, and choose a gain set that
inimizes the contour error. When a three-dimensional circular

rajectory is used, the contour error is F:
ring 36 (2012) 339– 348 345

F (Kx,p, Ky,p, Kz,p) =
∑

k

∣∣∣rd −
√

(x(k) − x0)2 + (y(k) − y0)2 + (z(k) − z0)2

∣∣∣ , (14)

where (x0, y0, z0) is the center and rd is the radius. The gain of a single
axis may  be adjusted by a small amount, say 1%, while fixing the
other two  gains. Then, this procedure is repeated for the remaining
axes to find a minimum. However, this sort of a global search would
take an impractically long time to finish.

5.1. Optimal-design approach

Optimum design theory [34] is used to find the P gains much
faster than the global search. If we express P gains in a vector form
x = (x1, x2, x3) (x1 = Kx,p, x2 = Ky,p, x3 = Kz,p), then the contour error
is F(x) (Eq. (14)). Using an optimal design procedure, x that mini-
mizes F(x) can be found. This specific optimization problem could
not be solved using algorithms such as SLP (sequential linear pro-
gramming) and QP (quadratic programming), because we  do not
have a priori knowledge on the shape of the objective function F(x).
As a result, a steepest-descent algorithm (SDA), a gradient descent
method, is proposed in this work.

In formulating optimization problem of F(x), the upper bound
xu are the P gains obtained in Section 4.2,  of which the closed-loop
response has the maximum CLBW without resonance. By setting
the upper bound in this way, the optimal search algorithm is pre-
vented from resulting in excessively underdamped closed-loop
response. On the other hand without a proper lower bound, the
CLBW can be reduced significantly, causing a poor tracking perfor-
mance. We  propose that the lower bound xl is to be specified by a
designer: x that results the lowest allowable CLBW for all axes. The
CLBWs obtained in the numerical search method (i.e., upper bound)
were 18.46, 15.25, and 13.08 Hz for the x, y, and z axis respectively.
Thus the fine tuning will not result in an unstable feed system owing
to structural modes typically higher than 100 Hz [25]. The lower
bound is chosen to be less than 13.08 Hz for the z-axis where the
CLBW is the smallest among the axes, but it should not be too small
to lose tracking performance significantly. Thus the lower bound
was chosen to be 12 Hz in this work.

The initial P gains x(0) were chosen to be the center point of the
solution boundary: x(0) = (xl + xu)/2. Steepest-descent direction d(i)

that reduces the contour error F(x) fastest is expressed as:

d(i) = −�F(i)(x(i)) =
(

− ∂F

∂x1
|
x1=x(i)

1
, − ∂F

∂x2
|
x2=x(i)

2
, − ∂F

∂x3
|
x3=x(i)

3

)
,

(15)

where the subscript 1, 2, and 3 denote the x, y, and z axis
respectively. The derivatives are calculated numerically using the
central-difference approximation since F(x) is not an explicit func-
tion. When calculating the central difference, the difference �xj
(j = 1, 2, 3) should be carefully selected. If �xj is too small, the
amount of the descent becomes excessively large. In this work,
�xj was  chosen 0.1% of the initial P-gains x(0)

j
. Contour errors

were averaged when calculating F to minimize the effects of
measurement noise in y(k). The amount of the descent in the
direction of d(i) is determined by an iterative search (i.e., golden-
section method [34]). The search completes when the criterion
|d(i)| < ı is met  for a small ı, and then the optimal P gains x are
obtained.

5.2. Fine-tuning result
Fine tuning for the minimum contour error was performed
in both numerical simulation and experiment. Fig. 8 shows a
test trajectory, a 3-D circle of 20-mm diameter: (x + r)2 + (y −
z)2/2 − r2

d = 0, and a tracking result when the P gains are ones
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ig. 8. The 3-dimensional circular test trajectory, and the actual tracking result
hen P gains were x = (0.0010826, 0.0017102, 0.00523). The contour error is mag-
ified 10 times.
btained from the pole-placement method. The upper bound xu

as (0.0018931, 0.0018733, 0.0014260) (i.e., gains from the numer-
cal search method) and the lower bound xl was (0.0013921,
.0015623, 0.0013213) (i.e., the lowest allowable CLBW = 12 Hz).

(c)

ig. 9. Contouring results (the contour error magnified 50 times) obtained with (a) the p
c)  the fine tuning using the steepest-descent algorithm.
ring 36 (2012) 339– 348

Numerical simulation: A simulation code for the SDA was  writ-
ten in MATLAB. The feed rate for all the axes were 0.5 m/min. The
initial P gains are: x(0) = (0.0016426, 0.0017178, 0.0013736), which
is the center of the gain boundary. The SDA continues to modify
P-gains in the direction of reducing contour error. It only took 5
steps to find the minimum F(x) = 0.0038462, when x = (0.0015736,
0.0017515, 0.0014260). All predicted CLBWs are similar; the CLBWs
were 14.630, 14.015, and 13.068 Hz for the x, y, and z axis
respectively.

Experimental result: The fine-tuning method was implemented
in the machining center. The identical test trajectory and feed rate
were used. The minimum F(x) was found in ∼440 s. The final gains
are: x = (0.0014747, 0.0017732, 0.0014145). The gains designed
using (1) the pole-placement method (� = 0.707), (2) the numeri-
cal search method in the frequency domain, and (3) the SDA fine
tuning are compared in Table 2.

The gain margin (GM) and phase margin (PM) were also charac-
terized using the open-loop model (Table 1) and P gains obtained
in each controller-design method. The GM was from 3 to 10 and the
PM was  from 60◦ to 80◦. The numerical search method assures that
the system, even when the dominant-complex-pole assumption
fails, is properly damped by forcing the condition Eq. (13). As the

fine tuning algorithm searches feedback gains with the constraint
that the upper bound being the value obtained in the numeri-
cal search, the PM of system was also satisfactory (�30◦). The
GM and PM values indicate that the control system is adequately

ole-placement method, (b) the numerical search method in frequency domain, and
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Table 3
The average contour errors obtained using P controller obtained in each controller-
design step.

Feed rate Pole placement Numerical search Fine tuning

Average 0.5 m/min 37.89 12.37 2.25
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Contour 1 m/min 74.26 24.45 5.15
Error 2 m/min 146.45 48.58 15.50

tabilized in the proposed design methods, and has robustness to
odel uncertainty, considering the accuracy of the models and

he nature of the feed system (i.e., no payload variation, negligible
mpact from the cutting force). The sensitivity peak Ms was charac-
erized as well, and the value was always less than 1.6. Therefore,
t suggests that a disturbance input signal can be well attenuated
n the feedback system [35].

The average contour errors acquired for three different feed
ates using each of the designed controllers are tabulated in Table 3.
he feed rates were 0.5, 1, and 2 m/min. The three-dimensional con-
ouring results (e.g., Fig. 8) are projected onto a two-dimensional
lane in Fig. 9 for better illustration when the feed rate is 0.5 m/min.
ig. 9a presents the contour error from the pole-placement design.
he CLBW of each feed axis was significantly different (i.e., 7.75,
3.58, and 2.89 Hz for the x, y, and z axis respectively). Therefore, the
rajectory was severely elliptical, and the average contour error was
he largest (37.89 �m).  The numerical search method in frequency
omain improved the contour error more than three times (i.e.,
2.37 �m,  Fig. 9b) as the CLBWs of x and y axis are much improved.
onetheless, the elliptical trajectory is still an evidence of “unco-
rdinated” closed-loop dynamics. The fine-tuning result in Fig. 9c
learly shows that the trajectory is very close to a circle because
he feed axes are now well coordinated; the predicted CLBWs are
he most similar, comparing with other methods (i.e., 13.21, 14.24,
2.96 Hz for the x, y, and z axis respectively). The contour error

s the smallest (2.25 �m),  which is more than 16 times improve-
ent over the pole-placement method. This result is encouraging

n that the encoder resolution is only 1 �m in the ACE-V30. How-
ver, “quadrant glitches” due to the friction still exist, which could
e alleviated using feedforward compensation [6] in the future.
he user-defined minimum bandwidth (12 Hz) was  not violated
ven though the CLBW of each axis has been somewhat reduced
s a result of the optimal search (Table 2). Thus, there was  not a
ignificant loss of tracking bandwidth.

. Conclusions and discussion

Without using a complex motion controller that may  not
mprove the performance meaningfully, an autotuning procedure
f a P controller for feed-drive systems of a CNC vertical machin-
ng center was successfully implemented. Due to extremely large

oving mass of traveling-column-type vertical machining center,
he use of aggressive high-frequency perturbation signals was  pro-
ibited. The novel multiharmonic perturbation signal was  smooth
nd informative enough; system identification of high-order dis-
rete transfer functions was rapidly completed without upsetting
he plant or violating travel limits. The discrete domain open-loop

odels are similar to those obtained using a random Gaussian
equence and step-sine sweep excitation. Power spectral estimate
f the model transfer function was also close to one that was exper-
mentally obtained. Formulation of prediction-error method was

odified to ensure the stability of the open-loop poles owing to
ntegrating action of a current controller in a servo drive. Also, the

utotuning program shows the estimated poles and zeros to the
nd-user for examining model stability.

Using the numerical search method, the closed-loop bandwidth
CLBW) of each axis was maximized while keeping the model well

[
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damped. The CLBWs for the x and z axes are much improved com-
pared to the results of the pole-placement method. A fine-tuning
method based on an optimal search algorithm was also introduced.
Unmatched closed-loop dynamics to a three dimensional circu-
lar trajectory were adjusted by fine-tuning the three feed axes
simultaneously. As a result, contouring error was  minimized. Using
an optimal search method (i.e., steepest-descent algorithm), the
optimal P gains were successfully and rapidly found. Using the
automated fine tuning, the contour error is greatly reduced at all
the tested feed rates (i.e., 0.5, 1, and 2 m/min), compared to the
results of the other two  design methods. Testing the fine-tuned P
gains further with various trajectories (e.g., much faster circles, dia-
mond, 3-D linear interpolation) is underway. Importantly, all the
P-gain design steps yielded the closed-loop systems of which the
predicted stability margins are satisfactory. All the tuning steps can
be automated with minimal initial-parameter settings. The auto-
tuning procedure could be implemented in similar motion control
systems of machine tools, where the CLBW is typical (<25 Hz).
Thus, the time and labor costs can be saved before commission-
ing, and the machine tools can be readily retuned by the end
user.

The autotuning procedure presented here could be adapted for
motion controller design for high-speed machining applications,
where a higher tracking bandwidth is required (e.g., 100 Hz [4]). An
advanced feedback controller (PD or PID) could be used to improve
the CLBW. The extension of controller design including relevant
feedforward controls (i.e., ZPTEC, friction compensation) for this
purpose is also underway. Finally, more systematic and reliable
approaches on the automated modeling (i.e., nonlinearity charac-
terization on perturbation signal, automated comparison with the
spectral estimate of input/output signal) will be also valuable in
employing the multiharmonic signal for identification of a wider
class of machine tools.
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