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ABSTRACT 

We report on fully-functional Western blotting 
demonstrated in an automated microfluidic format.  The 
novel microfluidic device incorporates contiguous 
polyacrylamide (PA) gel regions tailored for different 
biochemical/physical functionality in a microchamber.  Our 
photopatterned polymer design strategy enables assay 
performance not possible with traditional bench-top Western 
blotting: rapid completion of multiple Western-blotting steps 
(~2 hours), minute sample consumption (< 10 ng), and no 
manual intervention. Using this format, three key Western 
blotting steps are seamlessly integrated in a single 
microfluidic device:  (1) accurate protein sizing and 
separation via cationic detergent based polyacrylamide gel 
electrophoresis (Cat-PAGE), (2) immobilization of proteins 
after separation using electrostatic interaction with PA gel 
matrix, and (3) antibody-based detection and quantitation of 
immobilized protein targets. As a means to characterize 
system performance, a protein ladder consisting of protein G, 
ovalbumin (OVA), bovine serum albumin (BSA), and 
α-actinin is separated and then immobilized with mobility 
information preserved. Subsequent immunoblotting is also 
demonstrated.  We see this format as forming the basis for 
unmatched protein blotting as is relevant to basic life 
sciences research.  
 
INTRODUCTION 

Western blotting is an indispensable bioanalytical tool – 
found in nearly every bioscience or biomedical research 
laboratory. Separations based on electrophoretic mobility in 
a polymeric sieving matrix (i.e., PAGE) provide molecular 
weight (MW) information for proteins. Subsequent transfer 
of proteins to a membrane and incubation with 
immunoaffinity probes allows highly specific detection of a 
target protein in complex biological fluids [1]. With this 
combination of assay steps, Western blotting is not only a 
powerful bioanalytical tool but also a diagnostic tool for 
diseases [2].  

However, bench-top Western blotting (Figure 1) has 
critical performance drawbacks including large sample 
consumption (1-40 µg), long assay times (hours-to-days), 
and numerous manual intervention steps. As a solution to 
these problems, our research group laid out ground work for 
microfluidic Western blotting: 1D [2] and 2D [3] 
microfluidic PAGE and immunoblotting using antibody 
copolymerized in PA gels. Building on these initial studies, 
the present work introduces both device and assay innovation 
to integrate the three steps central to Western blotting in a 

microfluidic device without compromise. The new approach 
offers significant advances: (a) surfactant-based protein 
sizing to determine accurate MW, (b) electrostatic 
immobilization of all resolved proteins, and (c) subsequent 
use of an antibody probe for a protein target.  

A distinct difference of the new approach is the sizing 
assay: a cationic surfactant that maintains protein activity is 
used in lieu of harsher anionic detergents [4]. The cationic 
surfactant (CTAB) binds proteins at an equal molar ratio and 
thus imposes the identical charge-to-mass ratio. As a result 
linear log-MW to mobility relation is observed for separation 
of CTAB-treated proteins. CTAB retains protein binding 
activity. Therefore, direct antibody-based blotting is possible 
– unlike de-facto standard anionic SDS (sodium dodecyl 
sulfate) system.  

Most notably, a novel mechanism for post-sizing protein 
immobilization is devised for CTAB-PAGE. In sharp 
contrast to our previous antibody-based immobilization 
approaches [2, 3], we have developed charged PA gels. The 
net surface charges of proteins and gel matrix in opposite 
polarity enable electrostatic interaction. All separated 
proteins are strongly immobilized, conserving full separation 

 
Figure 1: Conventional Western blotting steps. Samples are 
loaded into wells of a slab gel (Sample loading). The 
charged proteins are separated due to different mobility 
under electric field (Separation). The separated protein 
bands are transferred to a membrane support by electric 
field (Electrotransfer). After blocking of open charge sites 
(Blocking), an immunoaffinity probe is introduced for 
detection of a protein target (Immunodetection). 
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MICROFLUIDIC PAGE ASSAY 
All assay steps (Figure 3) were performed by controlling 

voltage and current via 8 access holes with a custom 
high-voltage sequencer. Just before the sample loading step, 
0.1% CTAB was electrophoretically introduced to the PA 
gels as insufficient CTAB concentration results in: (1) 
dilution mediated CTAB-protein dissociation, and (2) 
significant unwanted binding of proteins to the PA gels 
before the PAGE separation.  

An epifluorescence microscope (IX-70, Olympus) 
equipped with a Peltier-cooled CCD camera (CoolSNAP 
HQ2, Photometrics, Tucson, AZ) was used to capture 
fluorescence image of proteins during all assay stages. The 
images were later analyzed for protein quantitation using 
ImageJ software (NIH, Bethesda, Maryland).  
     
RESULT 

The CTAB-treated molecular-weight standard was 
pipetted into the hole 3. A narrow plug was formed at the 
double-T junction. Due to the large pore size (3%T) of the 
loading gel, sample loading was fast (< 1 min). The sample 
was injected into the 2D chamber (Figure 3i). Upon reaching 
the separation gel (6%T), the sudden decrease in pore size 
results in sample stacking. While migrating downstream, the 
protein mixture separates into multiple bands based on their 
molecular weight due to sieving action (Figure 3ii). As seen 
in the separation montage (Figure 4a), the protein plug 
stacked and then separated into compact bands (except 
smearing α-actinin of a large MW) within 30 s. The linear 
log-MW vs. mobility relation was observed (Figure 4b), 
promising accurate MW determination when using 
CTAB-PAGE.   

After separation, horizontal electric field was applied to 
transfer the separated protein bands to the blotting gel (Figure 
3iii). Upon reaching the blotting gel, the separated protein 
bands are compressed and immobilized due to electrostatic 
interaction with PA gel (Figure 5). In alkaline TA buffer (pH 
8.2), PA is hydrolyzed and bears net negative charges [6]. 
When biotinylated “capture proteins” of large MW and 
low-pI value such as IgG (pI=5.5-8.0, MW=150 kDa [7]) and 
β-galactosidase (pI=4.61, MW=465 kDa) are copolymerized 
in PA gel using streptavidin-acrylamide linker, the charge 
density was dramatically enhanced, which was evidenced by 
much stronger immobilization. Completion of electrotranfer 

takes about 42 s. Based on fluorescence intensity, substantial 
amounts of separated proteins are retained. Retention of 
separated proteins after the immobilization is 75, 77, 65, 78% 
for protein G, OVA, BSA, and α-actinin respectively. The 
near 1:1 mapping between separation pattern and 
immobilization is noted (e.g., separation resolution between 
protein G and OVA is 1.4 before and after the blotting), 
indicating a superior control of protein transport. Assay from 
sample loading to electrotransfer is completed in merely 63 s, 
which is ~102 less than the conventional Western blotting.  

After immobilization, a horizontal electric field is 
continuously applied to wash off residual CTAB from the 
blotting gel. This step is critical for subsequent probing 
antibody introduction as antibody tends to precipitate when 
expose to CTAB. In the following quenching step, open 
charge sites on the gel are “blocked” by electrophoretically 
introducing 1% BSA (w/v) solubilized in TA buffer to 
prevent non-specific antibody binding (Figure 3iv). Residual 
BSA was washed off by applying reverse electric field. After 
the blocking, an antibody probe conjugated with Alexa Fluor 

 
Figure 3: On-chip Western blotting assay sequence: (i) Proteins are injected into the 2D chamber (red plug at image top). (ii) 
Proteins separate according to MW. (iii) Resolved proteins are transferred to the blotting gel by horizontal electric field, and 
immobilized by electrostatic interaction. (iv) Blocking reagent (1% BSA) prevents non-specific binding of antibody. (v) Finally, 
antibody probe (*Ab) is introduced to the immobilized sample.   

 

  
Figure 4: Separation montage of a wide MW protein ladder: 
(1) protein G, (2) OVA, (3) BSA, (4) α-actinin. (a) sizing and 
separation completes in <30 s. (b) Linear log MW vs. mobility 
graph  indicates CTAB protein sizing. 
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568 (Invitrogen) was introduced, incubated for 10 min and 
washed off by applying reverse field. The immunoaffinity 
probe binds specifically with immobilized target as seen in 
two color imaging (Figure 6). Protein G was successfully 
detected without complicated protein-renaturing required for 
conventional Western blotting.  
 
CONCLUSION 

Microfluidic CTAB-PAGE harnesses the true 
integration potential of microfluidics to yield ‘hands-free’ 
Western blotting; sizable tank blotting cell is miniaturized in 
a tiny glass chip and the total assay is automated via 
multi-channel voltage/current control.  Importantly, the assay 
performance is also notably enhanced: 102-103× reduced 
sample consumption (~10 ng) and rapid completion times 
(~2.5 hours vs. 1-2 days). CTAB-PAGE is an attractive 
alternative to the canonical SDS-PAGE in microfluidic 
format. Electrostatic interaction enables electrotransfer of all 
resolved protein to the blotting region. The immunodetection 
of target becomes more versatile with the assistance of 
CTAB. There is no need for copolymerization of 
matched-pair antibodies to immobilize the separated protein 
targets. Instead, immunoaffinity probes are introduced after 
immobilization. This means that enzyme-linked secondary 
antibody can also be used to boost signal, which allows 
label-free detection and significant improvement of the 
detection limit. Finally, immunoblotting is performed 
without complex and time-consuming protein renaturation 
steps. 

 This novel suite of microfluidic bioanalytical assays is 
currently under optimization. We see the reported format as 

forming the basis for the full suite of immunoblotting assays, 
as well as for other multi-dimensional separations.  
Regarding Western blotting, we are currently developing a 
high sensitivity (pM) version of this assay with >90% capture 
efficiency of target protein after sizing separation.  High 
sensitivity detection, combined with the quantitation 
potential of the reported approach, would enable analysis of 
low-abundance protein biomarkers of disease, even in 
limited volume samples (e.g., clinical samples housed in 
repositories, specific to longitudinal assessment of disease 
development).  Further, the ability to blot proteins from a 
small group of cells – or even single cells – is a major thrust 
of our current studies. 
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Figure 5: Electrostatic immobilization allows capture of all 

sized proteins 

 
Figure 6: Two-color images for immunoblotting results. (a) 
Immobilized proteins (green) and (b) subsequent antibody 
binding of protein G (red). Protein G binds specifically with 
anti-protein G indicating successful immunodetection. 
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